Machine learning Python course
Introduction to Python Programming
-
Overview of Python
-
History of Python
-
Python Basics – variables, identifiers, indentation
-
Data Structures in Python (list, string, sets, tuples, dictionary)
-
Statements in Python (conditional, iterative, jump)
-
OOPS concepts
-
Exception Handling
Regular Expression
Introduction to various packages and related functions
-
Numpy, Pandas and Matplotlib
-
Pandas Module
-
Series
-
Data Frames
-
Numpy Module
-
Numpy arrays
-
Numpy operations
-
Matplotlib module
-
Plotting information
-
Bar Charts and Histogram
-
Box and Whisker Plots
-
Heatmap
-
Scatter Plots
Data Wrangling using Python
-
NumPy – Arrays
-
Data Operations (Selection , Append , Concat , Joins)
-
Univariate Analysis
-
Multivariate Analysis
-
Handling Missing Values
-
Handling Outliers
Introduction to Machine Learning with Python
-
What is Machine Learning?
-
Introduction to Machine Learning
-
Types of Machine Learning
-
Basic Probability required for Machine Learning
-
Linear Algebra required for Machine Learning
Supervised Learning - Regression
-
Simple Linear Regression
-
Multiple Linear Regression
-
Assumptions of Linear Regression
-
Polynomial Regression
-
R2 and RMSE
Supervised Learning – Classification
-
Logistic Regression
-
Decision Trees
-
Random Forests
-
SVM
-
Naïve Bayes
-
Confusion Matrix